“无质量”碳纤维电池取得重大突破!

2021-03-25 10:16  来源:cnBeta.COM  浏览:  

从电动汽车到无人机,电池在能量密度和自身重量上一直难以得到很好的平衡。不过查尔默斯理工大学的科学家们,一直在探索这些常规储能解决方案的有趣替代。比如近日,研究团队就宣称在“无质量”碳纤维电池项目上取得了重大突破,特点是可以兼作车辆的电池和结构部件。

结构插图(来自:Yen Strandqvist / Chalmers.se)

经过多年的努力,查尔默斯理工大学的研究团队终于实现了这一设想。通过让电池兼作结构部件,以减轻整车的设计重量。

之所以选择碳纤维在其中扮演重要角色,归因于众所周知的机械性能、以及通过正确的方式进行工程设计时可充当电极材料的能力。

2018 年的时候,科学家们发表了一项研究,描述了一种具有特殊晶体排列的碳纤维。它既可以提供车辆构造所需的刚度,又可以提供能量存储所需的电化学性能。

作为将这项研究专为实际应用的努力的一部分,科学家们现已生产出一种碳纤维结构电池,具有较以往任何版本都优秀 10 倍的性能。

Johanna Xu 博士向 Leif Asp 展示新型电池(图自:Marcus Folino)

据悉,该电池由碳纤维制成的负极、以及磷酸锂铁涂覆铝箔制成正极组成,两者被用作结构电解质基质的玻璃纤维织物隔开。

它既可以像常规电池一样在电极之间传输锂离子,又有助于将机械负载分散到结构的不同部分。基于此,研究人员将之称作“无质量”的储能设备。

从理论上来说,它确实可以摆脱传统电池的部分缺点 —— 不给车辆增加任何“额外”的重量。

然而实际应用方面,还是有一些难以避免的妥协。比如这种新型电池的能量密度仅为 24 Wh/kg,约为当前锂离子电池的 20% 。

材料刚度 25 GPa,可与其它常用材料相媲美。

另一方面,如果用这种电池取代经典的锂离子电池、并将之集成到电动汽车中,则整车重量有望极大地减轻。如此一来,只需消耗更少的能量,便可驱动电动汽车的行进。

项目负责人 Leif Asp 表示:先前制造的结构电池,通常只侧重于良好的机械性能、或出色的电气性能。不过他们使用碳纤维成功地设计了兼具结构刚性和储能优势的新型电池。

在性能提升 10 倍后,研究团队开始将精力放到其它新目标上,比如计划使用碳纤维代替正极中的铝材料,以进一步提升能量和机械性能。此外用更薄的材料取代玻璃纤维织物,以实现更快的充电。

研究配图 - 1:结构电池复合材料的制造

Leif Asp 预计,此类电池有望达成 75 Wh/kg 的能量密度和 75 GPa 的刚度(与铝材相当),但重量却要轻得多。从电动汽车到消费电子产品,未来的潜力更是不可估量。

有关这项研究的详情,已经发表在近日出版的《先进能源与可持续性研究》期刊上,原标题为《A Structural Battery and its Multifunctional Performance》。

免责声明:本网转载自合作媒体、机构或其他网站的信息,登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。本网所有信息仅供参考,不做交易和服务的根据。本网内容如有侵权或其它问题请及时告之,本网将及时修改或删除。凡以任何方式登录本网站或直接、间接使用本网站资料者,视为自愿接受本网站声明的约束。
相关推荐
先进动力和储能电池产业,该如何顺应新的发展形势要求?

先进动力和储能电池产业,该如何顺应新的发展形势要求?

“目前,我国矿物能源状态,仍然是富煤、少气、缺油。其中,在汽车保有2.4亿辆之下,自产原油约在1.9亿吨,对外依赖度仍很高。”中国工程院院士、中科院物理研究所的陈立泉说,能源形势逼人,挑战逼人,使命逼人,我们一定要大力发展储能产业,加速推动“动力中国”建设,这非常重要。
大连化物所合成柔性相变储能材料膜

大连化物所合成柔性相变储能材料膜

近日,中国科学院大连化学物理研究所研究员史全团队在相变储能材料研究方面取得新进展。他们通过简单易行的策略合成了石墨烯基的复合相变材料膜,并将其用于可穿戴的光—热管理器件。该复合相变材料膜具有优异的柔韧性、储热和光热转化能力,为智能可穿戴光—热管理器件研究提供了新思路。相关研究成果发表于《化学工程杂志》。
新型聚合物电池诞生 充电速度比锂离子电池快10倍

新型聚合物电池诞生 充电速度比锂离子电池快10倍

很难想象我们的日常生活中没有锂离子电池。它们主导了便携式电子设备的小规格电池市场,也普遍用于电动汽车。与此同时,锂离子电池也存在一些严重的问题,包括:在低温下存在潜在的火灾隐患和性能下降;以及废旧电池处理对环境的影响相当大。
研究发现内共生氮化锂/纤维素层可延长锂金属负极循环寿命

研究发现内共生氮化锂/纤维素层可延长锂金属负极循环寿命

锂金属具有理论容量密度高(3860 mAh/g)、电化学电势低(-3.040 V vs. SHE)等特点,是理想的高能量密度电池负极。然而锂金属活性高,容易与传统电解质发生不可控的副反应,形成固态电解质界面层(SEI)的化学和机械稳定性较差:一方面,循环过程中SEI的反复破裂会加速死锂的形成和不可逆的活性锂/电解质损失;另一方面,溶剂诱导形成的SEI机械性能较差,不足以抑制锂枝晶的生长,导致枝晶刺穿隔膜造成电池短路。
苏州纳米所设计出基于离子液体的锂电池安全电解液

苏州纳米所设计出基于离子液体的锂电池安全电解液

锂金属负极因其高的理论比容量(3860 mA h g-1)、低的电化学电位(-3.04 V vs. 标准氢电极)和低的密度(0.59 g cm-3),备受青睐,成为新一代颇具前景的高能量密度负极材料。实际应用中,它们仍存在尚未解决的问题:商业有机电解液在锂金属表面形成不稳定的固体电解质中间相(SEI),以及锂枝晶和死锂的生成,会持续消耗电解液,导致电池性能下降;持续生长的锂枝晶会刺穿隔膜,导致电池发生内短路从而引起热失控,同时传统碳酸酯类有机电解液极易参与燃烧反应,造成严重的安全隐患。

推荐阅读

热文

Copyright © 能源界