锂电池“长寿”密码找到

2018-10-24 15:41  浏览:  

锂电池在使用过程中会产生枝晶,枝晶断裂不仅会导致电池容量衰减,寿命打折,还可能刺透隔膜使电池短路起火引发安全问题。南开大学梁嘉杰、陈永胜教授课题组与江苏师范大学赖超课题组合作提出了解决这一问题的新优化策略,成功制备了具有多级结构的银纳米线—石墨烯三维多孔载体,并负载金属锂作为复合负极材料。这一载体可抑制锂枝晶产生,从而可实现电池超高速充电,有望大幅延长锂电池“寿命”。该研究成果在最新一期《先进材料》上发表。

近年来,世界各国有不少相关研究在锂负极材料的设计合成上取得重要突破,但至今仍无法抑制金属锂在大电流密度充放电下枝晶产生以及电极体积膨胀的问题,因此锂电池的长寿命、大容量“快充快放”依然难以逾越。

“把金属锂沉积到具有三维网络结构的多孔集流体中构建金属锂复合负极材料,是目前解决上述困难的有效途径之一。”梁嘉杰介绍说。基于此认识,课题组首次提出实现超高电流密度及超长循环寿命的理想金属锂负极三维载体材料选择及优化策略。他们利用石墨烯宏观体三维网络作为机械骨架,银纳米线二维网络作为导电结构,通过低成本、与工业化生产相兼容的涂布—冷干法,制备具有多级结构的银纳米线—石墨烯三维多孔载体,并负载金属锂作为金属锂复合负极材料。

经测试,该金属锂复合负极材料的比容量可达2573mAh/g;对称电池测试中,首次实现了在极高电流密度40mAh/cm2下反复充放电1000周以上,并且过电势低于120毫伏。通过电镜观察可以看到,该多级三维结构载体即使在极大电流充放电的循环条件下,仍能成功抑制金属锂负极中锂枝晶生长以及电极体积变化。

  锂电池
免责声明:本网转载自合作媒体、机构或其他网站的信息,登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。本网所有信息仅供参考,不做交易和服务的根据。本网内容如有侵权或其它问题请及时告之,本网将及时修改或删除。凡以任何方式登录本网站或直接、间接使用本网站资料者,视为自愿接受本网站声明的约束。
相关推荐
科学家利用弱电解质键让锂金属电池在低温下更好地运行

科学家利用弱电解质键让锂金属电池在低温下更好地运行

了探索更具应用前景的锂电池,许多研究团队已将目光放到了基于纯锂的金属阳极方案,而不是当前普遍采用的混合材料。同时为了攻克在低温下性能不佳的缺点,该领域的科学家们也已经取得了一些突破。比如加州大学圣迭戈分校(UCSD)的研究团队,就依靠电解质中的弱键,释放了锂金属电池在寒冷条件下的空前性能。
大连化物所研制出多功能MXene油墨应用于微型储能器件和自供电集成系统

大连化物所研制出多功能MXene油墨应用于微型储能器件和自供电集成系统

近日,中科院大连化学物理研究所研究员吴忠帅团队与刘生忠团队合作,开发出一种多功能的水系MXene印刷油墨,并基于该油墨打印出微型超级电容器、锂离子微型电池和全柔性自供电压力传感系统。相关研究成果发表在《先进材料》上。
正在引发新一轮能源革命的主角会是谁?

正在引发新一轮能源革命的主角会是谁?

新一轮能源革命的核心为可再生能源发电与规模储能,在众多电化学储能技术中,由于钠离子电池具有资源丰富、低成本、高安全、转换效率高、灵活方便易于集成、响应速度快、免维护等优点,因此是规模储能的理想选择之一。
中科院金属所:锂硫电池中的原位固化策略抑制多硫化物穿梭效应

中科院金属所:锂硫电池中的原位固化策略抑制多硫化物穿梭效应

高比能的锂硫电池被认为是最有前景的下一代储能体系。然而,锂硫电池在充放电过程中会产生可溶于醚类电解液的多硫化物,多硫化物的溶解和扩散会导致活性物质损失、锂负极腐蚀,使电池容量快速衰减。为此,科研工作者提出了各种策略限制多硫化锂的溶解和扩散,包括使用多孔、极性或是有催化作用的正极载体,在正极和隔膜间增加阻挡层和电解液改性等。其中,对作为多硫化物溶解和扩散媒介的电解液进行优化的策略,易于扩大规模,可满足未来商业应用的需求。
3D打印晶格结构锂电池电极新方法

3D打印晶格结构锂电池电极新方法

2021年2月10日,南极熊获悉,来自加州理工学院(Caltech)的研究团队开发了一种3D打印锂离子电池电极的新方法。

推荐阅读

热文

Copyright © 能源界