不再“烧开水”! 把传统的光热发电方式换一换 ?

2019-02-21 09:59  来源:观察者网  浏览:  

目前的主流火力发电,确实是“烧开水”--用锅炉将水烧成蒸汽,再用热机将蒸汽的内能转换为机械能,驱动发电机发电。从1785年瓦特发明蒸汽机起,就一直是如此。只不过这个过程,以前用的是往复式蒸汽机,现在用的是蒸汽轮机。即使是燃气轮机发电,目前效率最高的方式,也是燃气-蒸汽联合循环:在燃气轮机后面再加上一套废热锅炉,利用燃气轮机排出的废气的热量“烧开水”,再用汽轮机驱动发电机发电,从而最大限度地提高整套系统的热效率。

众所周知,我国光热资源主要集中在西部水资源相对缺乏的地区。那么能不能在利用太阳能光热资源的时候,“把传统的发电方式换一换”,不需要那么多水呢?第一个,也是目前已经投入大规模应用的办法,其实我那篇文章中已经提到了,那就是用斯特林发动机来驱动发电机

斯特林发动机发明于1816年,以其发明者,英国物理学家罗巴特·斯特林的名字命名。和大致与其同一时期发明的瓦特蒸汽机类似,它也是一种外燃式活塞发动机。但和瓦特蒸汽机不同的是,斯特林发动机不是用水蒸汽,而是用气体(早期用空气,现在一般用氦气或氢气)作为工质,这使得它不需要庞大的锅炉系统,也就是说,它不需要“烧开水”。

斯特林发动机的这个特点,再加上它是一种外部加热的闭式循环发动机,使得它有一个非常突出的优点:不“挑食”。它几乎可以使用任何形式的热源。这使得它非常适合用于太阳能光热发电。

斯特林发动机工作原理(本文图片均由作者收集供图)

鄂尔多斯100kW太阳能光热示范电厂是我国第一个碟式太阳能光热发电示范电厂,2012年9月建成,共由10台10kW碟式太阳能斯特林光热发电系统组成,年发电量为32万kWh

不过,斯特林发动机也有很多缺陷,最大的问题就是单机输出功率小。因为外部热源的热量供应是连续的,而斯特林发动机又是闭式循环,这使得斯特林发动机的气体工质会长时间保持在较高的温度,为了减少热损失必须采取隔热措施,由此必然导致其体积和重量增加。这使得它的功重比非常小,单机功率没法做得太大,历史上斯特林发动机曾经达到的最大单机功率也只有几百千瓦。这就大大限制了斯特林发动机的普及应用。可以说,靠斯特林发动机来代替“烧开水”,是不现实的。

幸而,除了斯特林发动机,还有一种发动机,也是不需要“烧开水”的,这就是燃气轮机。那么,光热发电能不能利用燃气轮机作为热机呢?

首先,让我们来简单回顾一下燃气轮机的构造和工作原理。一个最简单的燃气轮机,由压气机、燃烧室和涡轮三部分组成。空气先进入压气机,经压气机压缩升压后进入燃烧室,在燃烧室内,经过压缩的空气与燃料(气体或液体)混合燃烧,产生高温高压燃气,燃气驱动涡轮,由涡轮驱动压气机和对外输出功率,做功后的废气排入大气。

燃气轮机结构示意图

仔细分析这个过程,我们可以发现,经压气机压缩升压后的空气在燃烧室内与燃料混合燃烧产生高温高压气体,这一步是燃气轮机整个工作流程的核心环节。这就是说,如果能在燃烧之前,就先提升压缩空气的温度,就可以在保持燃烧室输出的燃气温度不变的同时,降低空气在燃烧室内的升温幅度,从而有效减少燃料的消耗量。

装备于英国45型驱逐舰的罗尔斯·罗伊斯WR21型燃气轮机就是利用做完功后排出的废气的热量,在压缩空气进入燃烧室之前对其加热,从而有效提高了燃机的燃料利用率。与功率相当的简单循环船用燃气轮机相比,WR-21可节约燃油27%到30%。既然可以用废气作为加热来源,那么光热自然也可以。

2005年10月,由中材南京玻璃纤维研究设计院春辉公司与以色列魏兹曼研究院合作,由中国工程院院士、南京市科协主席、东大-中天联合研究中心主任张耀明主持研制的70kW塔式太阳能热发电系统试验示范工程,在南京市江宁开发区建成并成功发电。这也是我国首座塔式太阳能热发电实验系统。该发电系统由1个塔柱和32面定日镜组成,占地面积约两个篮球场大小,反射的太阳光汇聚到塔柱顶端的太阳能转化装置,实现光电转换。

南京江宁70kW塔式太阳能热发电系统试验示范工程。它也是我国首座塔式太阳能热发电系统

与后来建成的北京延庆八达岭塔式太阳能热发电实验电站不同的是,南京江宁70kW塔式太阳能热发电系统试验示范工程采用的热机不是蒸汽轮机,而是燃气轮机。具体地说,是由以方提供的经过“太阳能化”改造的美国霍尼韦尔Parallon 75型燃气轮机。

Parallon 75是霍尼韦尔公司于90年代研制的微型燃气轮机,以天然气为燃料,最大输出功率75千瓦,主要用于分布式发电。应用于南京江宁70kW塔式太阳能热发电系统试验示范工程的Parallon 75型燃气轮机经过了“太阳能化”改造,在压气机和燃烧室之间增加了一个光热集热器

经过“太阳能化”改造的Parallon 75型燃气轮机与原型机不同的是,它在压气机和燃烧室之间,加上了一个太阳能集热器。空气被吸入燃气轮机后,先经压气机压缩,再经由集热器加热,经过这两道工序后,高温(1000℃)并带有一定压力的空气再进入燃烧室,混合天然气燃烧,产生燃气驱动涡轮。

实践证明,这种做法有效降低了燃气轮机的燃料消耗。实际运行的结果表明,与未经改造的Parallon 75型燃气轮机相比,经过“太阳能化”改造的Parallon 75型燃气轮机的燃料消耗率仅为前者的一半左右。经过两年的调试、完善,和连续发电运行测试表明,该系统运行稳定、操控方便、安全可靠。

南京江宁70kW塔式太阳能热发电系统试验示范工程的成功,可算是燃气轮机利用太阳能光热发电的成功实践。但它所用的燃气轮机仍然需要燃料,还不算是完全的太阳能光热发电。

那么,有没有什么完全利用太阳热能驱动燃气轮机的办法呢?也有。这就是超临界二氧化碳(SCO 2)布雷顿循环。

二氧化碳有一个很独特的物理性质:当温度达到30.98℃,压力达到7.38MPa时,其物理状态介于液体和气体之间,密度接近于液体,粘度接近于气体,扩散系数约为液体的100倍。这种状态,称为“超临界”状态。处于超临界状态下的二氧化碳,密度比气体大,粘性比液体小,具有流动性强、传热效率高、可压缩性小等特点。

二氧化碳的临界条件容易达到,化学性质不活泼,无色无味无毒,安全,价格便宜,纯度高,易获得。这些特性,使得它很适合用于作为热力循环工质。

所谓超临界二氧化碳布雷顿循环,就是用超临界状态的二氧化碳作为工质的涡轮发动机热循环。但和一般的燃气轮机不同的是,这种燃气轮机的燃烧室不燃烧燃料,而是用于外部热源对二氧化碳进行加热。超临界状态的二氧化碳在经过压气机压缩后,进入燃烧室由外部热源加热,加热后的高温超临界二氧化碳驱动涡轮,由涡轮驱动压气机和对外输出功率,作功之后的二氧化碳再回到压气机再被压缩,如此循环往复。

不难看出,这在本质上,就是一个和斯特林发动机一样的外燃式闭循环热机。如果用太阳能光热系统作为这个系统的外部热源,就是一个不需要“烧开水”,也不需要消耗燃料的纯太阳能光热发电系统。

超临界二氧化碳布雷顿循环系统原理图

超临界二氧化碳布雷顿循环的相关研究,国际上早在20世纪六七十年代就开始了。由于其功率密度高,对轮盘和叶片的性能要求很高,当时的加工工艺难以满足。直到90年代以后,随着高精度数控机床的应用,相关制造工艺得以突破,相关的研制工作才开始进行。

本世纪以来,在能源、环保问题加剧的情况下,超临界二氧化碳布雷顿循环技术更是引起各国的关注。美国在这方面尤其积极,美国能源部(DOE)于2011年开始实施太阳能应用领域的“Sunshot”攻关计划,该项目中的超临界二氧化碳布雷顿循环系统研发项目的主体项目为10MW超临界二氧化碳发电机组项目研发和测试,由美国桑迪亚(Sandia)国家实验室-核能系统实验室(NESL)承担相关的实验研究。

经过测试证明,S-CO 2作为工质的光热发电系统在600到700℃的温度范围内运行都可以有良好表现,可以在500℃以上、20MPa的大气压下实现高效率的热能利用,热效率可以达到45%以上。对于需要建设大规模镜场,因而投资巨大,需要高效率发电方式的光热发电来说,这显然是一个理想的选择。目前,美国、日本、印度都已经建成了相关的实验系统。

对于中国的超临界二氧化碳布雷顿循环研究来说,刚刚过去的2018年是非常重要的一年。2018年2月,由中国科学院工程热物理研究所研制的国内首台MW级超临界二氧化碳压缩机,在中国航发沈阳黎明航空发动机有限责任公司燃气轮机分公司完成加工装配,成功交付工程热物理研究所衡水基地。压缩机是超临界二氧化碳布雷顿循环系统的核心部件之一,它的研制成功,是我国在超临界二氧化碳布雷顿循环系统研究领域的一次重大突破。

由中国科学院工程热物理研究所研制的国内首台兆瓦级的超临界二氧化碳压缩机

免责声明:本网转载自合作媒体、机构或其他网站的信息,登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。本网所有信息仅供参考,不做交易和服务的根据。本网内容如有侵权或其它问题请及时告之,本网将及时修改或删除。凡以任何方式登录本网站或直接、间接使用本网站资料者,视为自愿接受本网站声明的约束。
相关推荐
长时间储热技术公司Azelio赢得首个商业订单

长时间储热技术公司Azelio赢得首个商业订单

据外媒消息,瑞典初创技术企业Azelio开发的长时间热能储存技术将首次在阿联酋迪拜的Mohammed bin Rashid Al-Maktoum太阳能发电厂进行商业化应用,其开发的解决方案能够有效储存来自于太阳能和风能的可再生能源,并能全天候提供电力和热能。
准油股份与浙大能源学院将在多能互补高温储热布雷顿循环光热发电技术等领域开展合作研究

准油股份与浙大能源学院将在多能互补高温储热布雷顿循环光热发电技术等领域开展合作研究

据协议,准油股份与浙大能源学院将在浙江大学青山湖能源研究基地建立合作平台,利用西部新疆丰富的能源资源,在煤热解燃烧分级转化技术、煤的清洁燃烧和超低排放、CO2捕集和利用、CO2驱油技术、生物质高效利用转化技术、多能互补的高温储热布雷顿循环光热发电技术等领域开展合作研究。
迪拜700兆瓦光热和250兆瓦光伏太阳能电站项目槽式1号机组发电机定子成功就位

迪拜700兆瓦光热和250兆瓦光伏太阳能电站项目槽式1号机组发电机定子成功就位

据上海电气电站工程公司方面消息,当地时间1月22日,迪拜700兆瓦光热和250兆瓦光伏太阳能电站项目槽式1号机组发电机定子成功就位,为后续发电机和汽轮机本体的安装奠定了坚实的基础。
美国夏威夷创新实验室在光热发电反射膜研究领域取得重要进展

美国夏威夷创新实验室在光热发电反射膜研究领域取得重要进展

据外媒报道,目前来自夏威夷大学(University of Hawaiʻi at Mānoa)的一家初创公司在一场旨在激励美国太阳能公司的全国性竞赛中大放异彩,凭借在聚光太阳能反射膜方面的研究进展,他们被选入美国制造太阳能奖的半决赛(该项竞赛由美国能源部资助、国家可再生能源委员会管理,总耗资300万美元),并获得了5万美元奖励,将进入下一阶段的比赛。
2020年度国际光热发电行业十大新闻

2020年度国际光热发电行业十大新闻

2020年,全球范围内在建的商业化光热项目并不多,以迪拜950MW光热光伏混合发电项目为代表的少数几个项目积极克服疫情等不利因素影响,正在加紧建设,预计2021年将陆续开始并网投运。同时,西班牙南非等多座已建成光热电站稳定且优异的表现为业界带来了更多信心,老牌光热大国西班牙开始重新将光热发电纳入未来能源版图。

推荐阅读

热文

Copyright © 能源界