日本氢能得以发展的原因及特点

2019-07-15 17:26  来源:能源情报  浏览:  

2015年全球达成应对气候变化“巴黎协定”,全球应对气候变化的形势日渐紧迫,大多数国家都在积极发展低碳新能源,以实现其应对气候变化的承诺。在发展风电和太阳能等可再生能源主流之外,氢能的发展也逐渐受到关注,因其具有高效、清洁以及便于规模化存储等特点。一些国家和地区如美国、欧盟、日本和韩国等都在氢能基础研究、应用研究方面进行了大规模投入,其中日本最为突出,日本政府制定了发展氢能和燃料电池的战略路线图。本文将简要说明日本发展氢能的原因,并梳理发展氢能的优势和挑战。

日本发展氢能的原因:国家能源安全和碳减排目标

2017年12月日本政府发布“氢能基本战略”,提出了氢能应用战略步骤和目标。“氢能基本战略”旨在实现氢能平价生产,建立涵盖从生产到下游市场应用的整个供应链,除了燃料电池车还包括氢能发电、燃料电池船运、化工生产行业氢气替代天然气等应用。该战略也阐明了日本大力发展氢能的原因,归结起来主要是能源安全、环境保护、节约能源以及促进相关产业发展。下文就主要有两点,一是能源安全考虑多样化能源供给、提高能源自给率;二是构建深度脱碳的能源系统,实现减排目标。

1保障国家能源安全

日本的一次能源极度匮乏,工业生产和日常生活的能源都大量依靠进口。目前日本约94%的一次能源依赖从海外进口的化石燃料,大约87%的石油主要从中东地区进口。加上日本福岛核电站事故的影响,核能在能源结构中的角色在弱化,日本能源自给率只有6%-7%。为实现能源安全,提升产业竞争力,日本加快了发展可替代性能源的步伐。而氢能由于其能源高效性,清洁性以及制造源和制造方法多样性,成为日本替代性能源选择之一。

2有助于实现碳减排目标

日本在巴黎协定中制定了到2030年减少26%的碳排放(与2013年的排放量相比较)的目标。其中电力部门的排放占总排放量的4成,但是基于目前日本发电依赖于煤电和核电,较低的可再生能源发电比例,实现这一目标挑战较大。关于制氢路线,日本现阶段主要是从化石燃料制氢,“氢能基本战略”提出到2030年要确立国内可再生能源制氢技术,构建国际氢能供应链,长期目标是利用碳捕获(CCS)技术实现平价化石燃料(如褐煤)的脱碳制氢和可再生能源制氢。因此,结合碳捕获技术和可再生能源制氢技术,氢能成为日本实现碳减排目标的重要途径。

图1. 日本关于氢能和燃料电池的战略路线图

来源:Ministry of Economy, Trade and Industry (METI)

 

氢能特点:高效、清洁、生产过程的高能耗

1氢能是高效率能源

单位质量的热值来看,氢气是汽油的三倍,是高能量密度的燃料。虽然氢气的体积能量密度不高,现在成熟储氢技术70MPa下的氢气体积能量密度约为汽油的三分之一,如果低温液态储氢和储氢合金技术能够有突破,体积能量密度有望提高1.5-2倍。氢能源既可以通过传统热机也可以通过燃料电池利用,燃料电池具有更少的能量损失,能量利用效率更高[3]。

2氢能具有规模化储存的优势

氢能作为二次能源,可以集中式、大规模、长时间储存,如果广泛应用可替代部分石油和天然气,也可以在风电、光电、水电富余或弃风、弃光、弃水较多的地区,以及城市电网峰、谷时段电力负荷差异较大的城市和地区,消纳和储存富余电力或峰段电力。

3氢能在使用阶段没有污染物排放

自然界中没有纯氢,需要通过其他能源辅助生产,从全生命周期来看,同样要排放污染物和温室气体。氢能对环境的影响与制备、运输、储存的各个环节相关,可选择的技术路径也很多。虽然商业上还没有形成成熟的产业链,但有研究表明:在大规模运输条件下,氢气运输环节的碳排放与能耗较小。氢气的主要能耗来自生产过程[4]。化石燃料制氢的燃料电池车与传统汽油车相比,氢燃料电池车可能有一定的节能减排优势。但从全生命周期看,用可再生能源电解水制氢才能带来显著的环境和碳减排的效益。

4制氢过程的高能耗

目前主要工业制氢方法有化石燃料制氢、从工业副产物提取氢气、可再生能源制氢等,目前来看,化石燃料制氢相对经济成本更低。但随着未来可再生能源的更大发展,可再生能源制氢的成本应具有竞争力。

从日本发展氢能和燃料电池的战略路线图(图1)和日本大规模进口氢气的计划(图2)来看,氢能将主要依赖进口。比如,在澳大利亚用煤气制氢,再将氢气运输回日本。这种方式虽然减少了日本本国的碳排放量,但是增加了澳大利亚减排的压力。当然这也与碳捕获技术有密切的关系,如果有大规模成本有效的碳捕获技术的应用,也许碳减排的目标可以实现,但是化石能源使用过程中造成的其他环境影响,如空气污染,不容忽视。因此,高耗能、高碳排放的氢气生产会对全球碳减排和应对环境挑战带来巨大挑战,需要进一步探讨和研究较为清洁的制氢方式。下一篇氢能系列的文章中也将对制氢方式的能耗和碳排放进行说明。

图2.日本大规模进口氢气的计划

来源:Innovation Norway

 

结语

日本的能源系统转型需要首先考虑如何满足其能源安全的需求,这涉及到如何多样化其能源供给、并提高能源自给率,同时在履行气候承诺的压力下,日本开始发展深度脱碳的能源系统。氢能被视为日本能源系统变革过程中的重要一环。日本将氢能发展提升到国家能源战略层面,以保障其国家能源安全和实现2030年减排目标,但其目前的制氢路线主要依靠化石燃料制氢,而大规模碳捕获技术的运用仍有不确定性。因此,日本需要加快发展太阳能、风能等可再生能源,一方面改变能源结构中可再生能源占比过低的现状,另一方面探寻利用水电解来制氢的低碳方式。(文/雍子惟,磐之石环境与能源研究中心)

标签:日本 氢能 能源安全 碳减排

免责声明:本网转载自合作媒体、机构或其他网站的信息,登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。本网所有信息仅供参考,不做交易和服务的根据。本网内容如有侵权或其它问题请及时告之,本网将及时修改或删除。凡以任何方式登录本网站或直接、间接使用本网站资料者,视为自愿接受本网站声明的约束。
相关推荐
日本柏崎刈羽核电站因核防护问题遭最差评级

日本柏崎刈羽核电站因核防护问题遭最差评级

据日本共同社报道,日本原子能规制委员会16日发布消息称,东京电力公司柏崎刈羽核电站核物质防护设备的功能部分丧失,未采取有效的替代措施,因此2020年3月以后曾有可能无法检测到恐怖主义等目的的违规侵入。东电称,侵入检测设备总计有15处故障,规制委指出其中10处替代措施不充分。
事故十年后走进福岛核电站:危险并未完全解除

事故十年后走进福岛核电站:危险并未完全解除

3月16日消息,十年前,由地震引发的一场巨大海啸袭击了日本福岛第一核电站,导致其三个反应堆熔毁,留下一片废墟,如同被炸毁的厂房。紧急救援人员冒着生命危险进行着善后工作,试图阻止这场严重的核危机失控。
日本研究人员利用机器学习进行无限太阳能电池实验

日本研究人员利用机器学习进行无限太阳能电池实验

大阪大学的研究人员利用机器学习来设计和虚拟测试有机太阳能电池的分子,这可以为可再生能源应用带来更高效率的功能材料。
日本加速发展能制氢的高温气冷堆

日本加速发展能制氢的高温气冷堆

在走向脱碳社会的趋势中,氢作为一种不排放二氧化碳的新能源越来越突出。氢气燃烧时释放出来的只有水。氢也有很高的热容,当用于燃料电池时会产生电能。在能源选择中,它是一颗闪亮的星星,但问题是使用哪种氢。
俄罗斯批准氢能发展路线图,谋求氢出口主动权

俄罗斯批准氢能发展路线图,谋求氢出口主动权

能源转型是悬在俄罗斯化石燃料工业头上的“达摩克利斯之剑”。当前,俄罗斯正试图通过对氢技术的早期投资为其能源工业找到新的发展目标。

推荐阅读

热文

Copyright © 能源界