我国科学家开发全球首个超过500Wh/kg锂金属软包电池

2020-07-29 09:53  来源:先进能源科技战略情报研究中心  浏览:  

当下全球电动汽车快速发展使得高能量密度的电池需求日益强烈。有鉴于此,世界主要发达国家,如美国、日本均设定了开发出能量密度高达500 Wh/kg的二次锂电池发展目标。经典的基于三元正极材料体系锂电池的工作原理是基于过渡金属(TM)相关的阳离子氧化还原反应,但受限于阳离子活性容量,该类电池容量难以达到500 Wh/kg,而氧元素有关的阴离子氧化还原活性则有望大幅提升电池能量密度,成为了目前二次电池体系研究的热点前沿。

南京大学Haoshen Zhou教授研究团队设计开发了一种稳定的、大容量基于阴离子氧化还原活性的正极材料体系,应用于锂金属(Li)软包全电池,通过氧化锂(Li2O)与过氧化锂(Li2O2)之间的可逆转化,显著提升了电池器件的性能,首次获得了超越500 Wh/kg的能量密度,且电池稳定循环100余次后仍可获得大于400 Wh/kg的能量密度,更为关键的是该电池镍金属的含量仅为1.59%(质量分数),远低于传统的高镍三元正极,成本更低更适于规模化生产,对电池产业和电动汽车发展具有重要推动作用。相关的研究表明,在Li金属电池正极材料的设计过程中,不局限于传统过渡金属氧化还原提供容量,利用Li2O与Li2O2之间的可逆转化,能够为正极体系提供很高的能量密度。理论计算得知,Li2O/Li2O2转化的理论能量密度高达2565 Wh/kg。为此研究人员利用湿化学法制备了Li2O基正极材料,同时为了提升无氧气析出的“安全”充电深度,研究人员同时制备了匹配的镍基碳合金导电催化框架(Ni-CAC)包覆Li2O形成Li2O@Ni-CAC电极体系,一方面有助于提升电池性能,另一方面有利于减少镍金属使用量降低成本。接着以Li2O@Ni-CAC和Li为正负极,醚类溶剂为电解质组装成完整的软包电池,并开展电化学性能测试。原位气相质谱和拉曼光谱实验显示,在充电过程中存在明显的Li2O向Li2O2的转化过程,且Li2O@Ni-CAC电极体系的可逆“安全”充电深度为750 mAh/g(基于Li2O活性物质质量),一旦超过这一数值就会出现不可逆的氧气析出。随后控制充电深度不超过750 mAh/g,进行充放电循环测试,发现电池可以稳定可逆循环100余次,且能量密度高达950 Wh/kg(考虑到所有电极材料质量的前提下,但不包括软包外壳);而在计入软包外壳后,电池依然获得了超越500 Wh/kg的能量密度,达到了513.5 Wh/kg,这是目前文献报道的能量密度最高的软包电池(计入整个软包电池质量后),且电池稳定循环100余次后,输出能量密度仍然高于400 Wh/kg,表现出优异的循环稳定性。

 

图 1 基于阴离子氧化还原活性正极材料体系锂金属(Li)软包全电池及其性能表征

该项研究设计开发了一种基于阴离子氧化还原活性的正极材料体系软包锂电池,得益于Li2O与Li2O2之间的可逆转化,电池器件的性能显著提升,首次获得了超越500 Wh/kg的能量密度,且具备良好循环稳定性,为设计开发高能量密度的锂金属电池开辟新思路。相关研究成果发表在《Joule》[1]。

[1] Yu Qiao, Han Deng, Ping He, et al. A 500 Wh/kg Lithium-Metal Cell Based on Anionic Redox. Joule, 2020, DOI: 10.1016/j.joule.2020.05.012

免责声明:本网转载自合作媒体、机构或其他网站的信息,登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。本网所有信息仅供参考,不做交易和服务的根据。本网内容如有侵权或其它问题请及时告之,本网将及时修改或删除。凡以任何方式登录本网站或直接、间接使用本网站资料者,视为自愿接受本网站声明的约束。
相关推荐
科学家利用弱电解质键让锂金属电池在低温下更好地运行

科学家利用弱电解质键让锂金属电池在低温下更好地运行

了探索更具应用前景的锂电池,许多研究团队已将目光放到了基于纯锂的金属阳极方案,而不是当前普遍采用的混合材料。同时为了攻克在低温下性能不佳的缺点,该领域的科学家们也已经取得了一些突破。比如加州大学圣迭戈分校(UCSD)的研究团队,就依靠电解质中的弱键,释放了锂金属电池在寒冷条件下的空前性能。
俄罗斯开发用体温转化为能量的充电技术

俄罗斯开发用体温转化为能量的充电技术

全世界都在开发把体温转化为能量的充电技术。俄罗斯也不例外。莫斯科电子技术研究所正在研究一种能够把热能转化为电能的材料,将来可以直接在手上或背部为便携式小装置充电。相关研究发表在《可持续性》杂志上。
大连化物所研制出多功能MXene油墨应用于微型储能器件和自供电集成系统

大连化物所研制出多功能MXene油墨应用于微型储能器件和自供电集成系统

近日,中科院大连化学物理研究所研究员吴忠帅团队与刘生忠团队合作,开发出一种多功能的水系MXene印刷油墨,并基于该油墨打印出微型超级电容器、锂离子微型电池和全柔性自供电压力传感系统。相关研究成果发表在《先进材料》上。
正在引发新一轮能源革命的主角会是谁?

正在引发新一轮能源革命的主角会是谁?

新一轮能源革命的核心为可再生能源发电与规模储能,在众多电化学储能技术中,由于钠离子电池具有资源丰富、低成本、高安全、转换效率高、灵活方便易于集成、响应速度快、免维护等优点,因此是规模储能的理想选择之一。
中科院金属所:锂硫电池中的原位固化策略抑制多硫化物穿梭效应

中科院金属所:锂硫电池中的原位固化策略抑制多硫化物穿梭效应

高比能的锂硫电池被认为是最有前景的下一代储能体系。然而,锂硫电池在充放电过程中会产生可溶于醚类电解液的多硫化物,多硫化物的溶解和扩散会导致活性物质损失、锂负极腐蚀,使电池容量快速衰减。为此,科研工作者提出了各种策略限制多硫化锂的溶解和扩散,包括使用多孔、极性或是有催化作用的正极载体,在正极和隔膜间增加阻挡层和电解液改性等。其中,对作为多硫化物溶解和扩散媒介的电解液进行优化的策略,易于扩大规模,可满足未来商业应用的需求。

推荐阅读

热文

Copyright © 能源界