为此,中国科学院苏州纳米技术与纳米仿生研究所博士王健与研究员蔺洪振,首次提出利用缺陷位点来锚定金属单原子的方法,将高活性金属单原子锚定在阳离子缺陷化合物中作为锂离子动力学调控层,实现对锂离子动力学的催化,丰富的金属单原子活性位点可引导锂以较低的能垒均匀成核,并促进锂金属表面的无枝晶化过程。与常规的纳米碳材料相比较,阳离子缺陷金属硫化物比纳米碳具有更好的亲锂性。缺陷位点能够捕获并锚定金属单原子,利用球差矫正电镜与X射线吸收光谱表征了钴单原子的形貌与化学环境,并通过能量散射谱分析了钴原子和铁原子的价态特征,确认了Fe1-xS和钴单原子的存在形态。 高活性的原子位点使SACo/ADFS@HPSC具有协同亲锂和催化锂离子动力学的效应能够显著调控锂沉积行为。活性金属单原子位点降低了锂成核势垒,促进锂的均匀水平沉积,从而获得1600 h的超长寿命和较高的库仑效率,有效阻止了锂沉积过程中的枝晶生长,并对循环后的电极形貌进行了表征与机制研究。与常规的SACs一样,SACo/ADFS@HPSC调控层对多硫化物的催化、硫化锂的沉积有明显催化作用。调控的锂金属作为负极与硫正极匹配后,锂硫全电池的硫利用率和倍率性能显著提高,倍率最高可达10 C。在1 mA cm-2下,制备的硫面积载量为5.4 mg cm-2的软包电池的面容量为3.78 mA cm-2,体现出较好的实际应用前景。该工作提供了一种利用催化材料来控制均匀剥离和沉积锂的表面电化学行为的新策略。
相关研究成果以Long-Life Dendrite-Free Lithium Metal Electrode Achieved by Constructing a Single Metal Atom Anchored in a Diffusion Modulator Layer为题,发表在Nano Letter上。论文第一作者为王健,论文通讯作者为蔺洪振。研究工作得到国家重点研发计划、国家自然科学基金及德国Alexander von Humboldt Foundation(洪堡基金)等的支持。
图1.阳离子缺陷硫化亚铁锚定高活性钴单原子的合成示意图和形貌特征
图2.SACo/ADFS@HPSC复合体系中活性金属单原子的谱学特征
图3.SACo/ADFS@HPSC调控层提升锂金属电极的电化学稳定性和寿命
图4.SACo/ADFS@HPSC对锂金属电极表面锂离子动力学的调控机理解析
图5.全电池电化学性能测试