青岛能源所开发出双碳双活性物质的新型锂-硫(硒)电池体系
然而,锂硫电池固有的自身缺陷阻碍了其持续的推广及应用:由于硫单质及还原产物多硫化合物(Li2S/Li2S2)的导电率低,导致锂硫电池中活性物质利用率低,倍率性能差;在充放电过程中产生的可溶性多硫化合物,导致“穿梭效应”出现,降低了电池的循环寿命。因此,开发具有高导电性,且对“穿梭效应”具有较强弱化能力的正极材料,是获取高性能锂硫电池的关键技术。
中国科学院青岛生物能源与过程研究所先进储能材料与技术研究组研究员武建飞深耕锂硫电池领域,针对锂硫电池的本征缺陷提出了多种解决思路,并取得了一系列的创新性研究成果(Journal of Materials Chemistry A, 6 (2018), 23486-23494;Electrochimica Acta, 295 (2019), 684-692;ACS Applied Materials & Interfaces, 11 (2019), 15607-15615;Advanced Materials Interfaces, 2020, 2001698)。以往研究发现,与硫同族的硒元素具有和硫类似的转化反应机理,且锂硒电池的“穿梭效应”可以明显得到抑制。而与锂硫电池相比,锂硒电池容量较低,无法满足高比能电池的要求。针对这一问题,该研究组博士生杨泽文利用硫和硒的协同作用,弥补各自体系的“木桶短板”,设计开发了具有双碳双活性物质的新型锂-硫(硒)电池体系。该体系以壳聚糖基衍生碳为基底,三维缠绕碳纳米管构成双碳的活性物质载体,可有效提高三维碳载体骨架的导电性和结构稳定性;通过煅烧方式负载硫-硒复合物作为活性材料,获得具有高容量、高循环稳定性能的锂硫(硒)电池正极材料。研究表明,在0.5 C(1 C=1340 mA·g-1)电流密度下,电池经过500次循环后仍保持833.2 mAh·g-1的高比容量。此外,该工作还利用简便有效的测试手段,探讨此电池体系的充放电机理,得出了硫-硒复合物作为活性物质的反应机理为锂硫和锂硒电池基本反应步骤的组合。
该研究为解决锂硫电池的本征缺陷问题提供了新的参考思路,并为硫族元素在锂金属电池中的研究和应用奠定了基础。近日,相关研究成果以Novel Lithium-Chalcogenide Batteries Combining S, Se and C Characteristics Supported by Chitosan-Derived Carbon Intertwined with CNTs为题,发表在Chemical Engineering Journal上。